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Recent advances in HIV vaccine development include initiation
of the first efficacy trials and substantial expansion of the
preclinical pipeline. Several preclinical candidate vaccines
have induced strong cellular immune responses and provided
impressive protection against AIDS in non-human primate
models; however, candidates that induce broadly neutralizing
antibodies remain elusive.
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Abbreviations
CTL cytotoxic T lymphocyte
HIV human immunodeficiency virus
MHC major histocompatibility complex
SIV simian immunodeficiency virus
TCLA tissue-culture laboratory-adapted

Introduction
A safe and effective vaccine is the best hope for stopping
the spread of HIV worldwide. As the 20th anniversary of
the discovery of HIV approaches, considerable optimism is
building that identification of an HIV vaccine is within
reach. Advances in vaccine design, animal models and clini-
cal research have recently converged to create a promising
pipeline of candidate vaccines. However, overcoming
remaining scientific, logistical and financial challenges
will require the talents and resources of all stakeholders —
academic researchers, pharmaceutical companies, philan-
thropic organizations, governments and communities. This

review outlines the major scientific advances of the past
two years and highlights important challenges in converting
the current optimism into success.

Clinical trial results
The HIV envelope is the predominant target of neutraliz-
ing antibodies in HIV-infected individuals. Several
adjuvanted recombinant monovalent HIV envelope pro-
teins (e.g. gp160 or the mature exterior portion gp120),
based on tissue-culture laboratory-adapted (TCLA) 
isolates of subtype B HIV, have been extensively studied
in human trials. These candidates induced neutralizing 
antibodies in virtually all volunteers tested, but these 
antibodies exhibited little cross-reactivity against primary
isolates of HIV [1]. Subsequently, bivalent candidates
developed by VaxGen Inc. (AIDSVAX , Brisbane, CA)
have advanced to efficacy trials in the USA and Thailand
(Table 1). The bivalent vaccine comprises two gp120s, one
from a subtype B TCLA isolate of HIV and one from a
subtype B or E primary isolate, and trial results are expected
around the end of 2002.

Until recently, the frequency and strength of neutraliz-
ing antibodies and cytotoxic T lymphocytes (CTLs)
induced by peptides based on the viral envelope or
internal proteins have been disappointing. Peptide 
lipid-ation has shown some promise in improving
immunogenicity — lipopeptides derived from env, gag
and nef proteins induced CTLs to one or more peptides
in up to two thirds of immunized volunteers [2]. Use of
novel adjuvants, cytokines and co-stimulatory molecules
are also under investigation. For example, a saponin
adjuvant (QS21), although not well tolerated, decreased
the dose of gp120 required to induce high-titer antibod-
ies [3•]. Peptides based on predictions of epitopes
representing immunodominant, conserved, ‘supertype’
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Table 1

HIV vaccine candidates in clinical trial.

Vaccine HIV subtype Producer Current status

gp120 B/B, B/E VaxGen Phase III trials ongoing in the US and Thailand
ALVAC-HIV B, E Aventis Pasteur In phase II trials in the US, Haiti, Brazil and Trinidad

(subtype B), and Thailand (subtype E); tested
alone or in combination with gp120 

ALVAC-HIV A Aventis Pasteur Ready for phase I trial in Uganda
Lipopeptides LP5, LP6 B ANRS In phase I trials in France
Vaccinia TBC-3B B Therion In phase I trials in the USA
DNA-HIV B Apollon Phase I trials completed 
DNA-HIV, MVA-HIV A University of Oxford In phase I trials in the UK and Kenya
NYVAC-HIV B Aventis Pasteur Ready for phase I trial in the USA
DNA-HIV, Adenovirus-HIV B Merck In phase I trials in the USA

ALVAC-HIV, recombinant canarypox expressing multiple HIV genes;
ANRS, National Agency for AIDS Research, France; MVA-HIV,
modified vaccinia Ankara, an attenuated vaccinia vector, expressing

multiple HIV genes; NYVAC-HIV, an attenuated vaccinia vector
expressing multiple HIV genes; TBC-3B, attenuated vaccinia vector
expressing multiple HIV genes.
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epitopes (e.g. recognized by multiple alleles) are also
under development [4•].

DNA candidates, thus far, have not fulfilled the expecta-
tions arising from early studies in mice. DNA vaccines
encoding env and gag-pol genes were safe in doses of up to
3 mg, but failed to induce strong immune responses
(Goepfert P et al., Int Conf AIDS 1998,12:635) [5•]. Codon-
optimized, adjuvanted and particle-formulated candidates
are expected to perform better.

Live recombinant vectors expressing one or more HIV
genes are among the most promising candidate vaccines.
The first HIV recombinant viral vector evaluated in
humans was an attenuated vaccinia that expressed the HIV
gp160 envelope protein. Subsequent trials evaluated a
more complex vaccinia recombinant expressing env and
gag-pol genes (Keefer MC et al., Int Conf AIDS 1998,12:278).
Recipients developed neutralizing antibodies but CTL
induction was limited; however, sensitive assays to detect
CTL responses were not available at that time.

The potential virulence of vaccinia in immune deficient
individuals has directed attention to recombinant viral vec-
tors with very limited or no ability to replicate in human
cells and to replicons, which lack the full complement of
genes required for complete replication and/or particle for-
mation. The most extensively studied vector in human trials
is ALVAC , a recombinant canarypox developed by Aventis
Pasteur. Five canarypox-HIV recombinants, alone or in

combination with gp120 subunit vaccines, have been evalu-
ated in humans. Although HIV-specific CTL responses
were detected in only about one-third to one-half of volun-
teers, the concomitant induction of neutralizing antibodies
and T-helper responses in volunteers boosted with gp120
has made this ‘prime-boost’ a promising approach [6••,7••].
A phase II study of a canarypox HIV candidate (ALVAC
vCP1452) in combination with gp120 (AIDSVAX B/B,
VaxGen) is underway in the USA. This study will lead to
an efficacy trial in late 2002 if immunogenicity criteria are
met. Another recombinant pox vector, modified vaccinia
Ankara (MVA, IDT Germany, under contract to the
University of Oxford, UK) expressing HIV gag and a 
number of CTL epitopes, has recently entered clinical
trial in the UK and Kenya.

Preclinical studies
Preclinical studies have truly fueled the current optimism.
First, several candidate vaccines have produced promising
results in rather stringent non-human primate models of
AIDS. Second, the number of candidates advancing
toward phase I human trials has increased dramatically in
the past three years (Table 2).

Advancements in the field of HIV and SIV (simian
immunodeficiency virus) immunology have permitted
more thorough and sensitive evaluation of cellular
responses to HIV and SIV candidate vaccines (Table 3).
Until a few years ago, cellular immune assays were limited
to measuring proliferation of T cells exposed to antigen

Table 2

Candidate vaccines in preclinical development.

Vaccine* HIV subtype Preclinical partners(s)†

Adeno-associated virus expressing multiple genes C Targeted Genetics, Ohio State University, IAVI
Adenovirus expressing multiple genes (replicating) B NCI
ALVAC expressing multiple genes A Aventis Pasteur, WRAIR
DNA and adenovirus (replicon) expressing multiple genes B Merck
DNA and adenovirus expressing novel gag-pol and novel env B NIAID Vaccine Research Center
DNA and MVA expressing multiple genes B, A/G Emory University, NIAID,CDC
MVA expressing multiple genes A, D WRAIR
DNA, Sindbis replicons expressing multiple genes, novel B, C Chiron, NIAID
recombinant envelope proteins

DNA expressing multiple HIV genes, DNA expressing cytokine B Wyeth-Lederle, NIAID
gene and peptide boost

DNA and fowlpox expressing multiple HIV genes and cytokine B, E University of New South Wales, NIAID
DNA-env and envelope protein Multiple ABL, NIAID
Gp120 and regulatory proteins in novel adjuvants B GlaxoSmithKline
MVA expressing multiple genes, including CCR5-using envelope B Therion, University of Massachusetts, NIAID
MVA, NYVAC, DNA, Semliki Forest Virus expressing multiple C Eurovac, Aventis Pasteur
genes and envelope protein

P55 VLP B Protein Sciences, NIAID
Salmonella expressing multiple genes A, A/G IHV, IAVI, NIAID
Vaccinia-env and envelope proteins Multiple St Jude, NIAID
VEE-gag (replicons) C IAVI, NIAID
VEE expressing multiples genes (replicons) C NIAID, WRAIR 

*CCR5, CC chemokine receptor 5; MVA; modified vaccinia Ankara;
NYVAC, attenuated vaccinia virus; VEE, Veneuzuelan equine
encephalitis virus; VLP, virus-like particles. †CDC, Centers for Disease
Control and Protection; Eurovac, consortium of 21 laboratories in 8

European countries funded by the European Union; IAVI, International
AIDS Vaccine Initiatives; IHV, Institute of Human Virology; NCI,
National Cancer Institute; NIAID, National Institute of Allergy and
Infectious Diseases; WRAIR, Walter Reed Army Institute of Research.
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and CTL-mediated killing of autologous cells expressing
HIV epitopes, both of which are subject to considerable
variability. Newer assays such as ELISPOT — an enzyme-
linked immunosorbent assay (ELISA) format — allow for
detecting and counting cells producing interferon-γ or
other cytokines in response to specific peptides [8••].
T cells that recognize specific peptides bound to major
histocompatibility complex (MHC) class I molecules can
also be detected and counted by flow cytometry using
tetramers, which are molecules consisting of four copies
of a given class I molecule bound to their cognate 
peptide and alkaline phosphatase [9]. These advances,
combined with identification of CTL epitopes and 
their restricting MHC class I molecules in rhesus
macaques, have made more detailed dissection of 
vaccine-induced immune responses in immunized animals
feasible [10–12,13•,14•].

Several candidate vaccines have been shown to protect
rhesus macaques from disease following challenge with a
highly pathogenic virus weeks to months after the last
immunization [14•,15–18,19••,20••,21]. Immunized ani-
mals became infected but controlled the infection to the
extent that, in some cases, viral levels in the blood were
low to undetectable, CD4+ T-cell counts remained stable,
and the animals did not progress to disease months after
most if not all control animals progressed to disease
[19••,20••]. Protection correlated with strong vaccine-
induced immune responses mediated by CD8+ T cells.
This is somewhat reminiscent of highly exposed Kenyan
sex workers whose resistance to detectable HIV infection
was associated with HIV-specific CD8+ T-cell responses
[22]. Interestingly, a small number of these women who
had left or decreased their sex work became HIV infected,
demonstrating that their protection was not life-long and
suggesting that continued exposure to antigenic stimulation
may be required to afford long-term protection [23]. Thus,
long-term follow-up of experimental animals will be
required to determine whether these ‘protected’ macaques
will eventually lose their controlling immune responses
and progress to disease and to what extent boosting of the
immune system may be necessary.

Transmissibility of virus from these animals has also not
yet been determined, although viral load in the plasma of
HIV-infected persons strongly correlates with transmission
to sexual partners and to newborns [24••,25]. Whether 
vaccine-induced long-term control of HIV replication will
prevent HIV transmission remains to be determined.

Most candidate vaccines that controlled infection through
strong cellular immune responses did not induce high-titer
neutralizing antibodies. However, cocktails of antibodies
passively transferred have protected macaques against
pathogenic challenge — protection correlated with in vitro
neutralization results [26,27••]. Studies with strains of HIV
that have been genetically modified have provided addi-
tional evidence that antibody can contribute to the control
of viremia [28]. Thus, a candidate vaccine that induces
broadly neutralizing antibodies as well as strong cellular
responses could provide improved protection against
infection or disease.

Additional optimism has also come from the substantial
increase in the number of vaccine candidates that are
scheduled to enter clinical trial in the coming 1–3 years. In
view of the high risk and relatively poor global market
forces that dissuade aggressive private sector investment in
product development, particularly for candidate vaccines
based on HIV subtypes that predominate worldwide, 
government and philanthropic sources have supported the
preclinical development of many of these (Table 2).

Vaccine design
As noted above, recombinant monomeric gp120 envelope
candidate vaccines elicit antibodies that are generally sub-
type specific and neutralize TCLA isolates but few if any
primary isolates of HIV. For this reason, there is little con-
fidence that the candidate recombinant envelope vaccines
now in clinical trials will induce neutralizing antibodies
with the breadth necessary for worldwide use. At a mini-
mum, cocktails of gp120s would be necessary. Antibodies
induced in human volunteers by ALVAC and gp120 have
been reported to neutralize five out of 14 primary isolates of
HIV, including HIV with different co-receptor usage [29•].

Table 3

Laboratory assessments of HIV–vaccine-induced immune responses.

Type of response Assessment Specific assays

Humoral immune responses Antibody binding assays ELISA, Western blots
Antibody neutralization assays
Antibody-mediated fusion inhibition assay
Antibody-dependent cytotoxicity

Cellular immune responses Proliferation to soluble antigens (mostly CD4+ cells)
Cytotoxicity Chromium-release assay
Enumeration of antigen-specific T cells Tetramer binding
Enumeration of cytokine-producing cells (IFN-γ, TNF-α, etc.) ELISPOT, intracellular staining 

(flow cytometry)

ELISA, enzyme-linked immunosorbent assay; IFN-γ, interferon-γ; TNF-α, tumor necrosis factor α.
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Unfortunately, although new viral vectors that enter human
trial this year and next may prove to induce more consistent
or higher levels of CTLs, candidates likely to induce broadly
neutralizing antibodies have not yet been identified.

Efforts to design a vaccine that induces broadly reactive
antibodies against primary isolates were given a boost with
the report that a fused cell preparation (comprising cells
expressing HIV envelope and cells expressing HIV recep-
tors) induced antibodies in transgenic mice that neutralized
23 of 24 primary isolates from different HIV subtypes [30].
Although this result has not been reproduced, several
groups have constructed modified envelopes that might
reveal conserved conformational epitopes critical to HIV
entry with somewhat encouraging results. The V2 loop is
one of three highly variable sequences of the HIV envelope.
Removal of this from a DNA vaccine resulted in a candi-
date vaccine that induced antibodies that were somewhat
more broadly reactive than the parent molecule [31]. A 
stabilized envelope trimer, designed to resemble the func-
tional envelope glycoprotein on the surface of the virion,
induced neutralizing antibodies against select primary iso-
lates and TCLA HIV, whereas trimers derived from TCLA
HIV induced antibody that neutralized only the homolo-
gous virus [32]. Other approaches — including stabile
oligomerization, removal of carbohydrate molecules, 
modification of envelope to be independent of CD4, and
gp120–CD4 fusion proteins or complexes — are also under
investigation [28,33•,34•,35–37]. No outstanding envelope
candidate has yet emerged.

Other remaining challenges
One achievement that would advance the field of HIV
vaccine development more than any other would be iden-
tifying a candidate vaccine that shows some protection in
human trials and determining the immune correlate(s) —
the type, magnitude, breadth and/or location of immune
responses — that are associated with protection.
Sensitive and quantitative antibody assays have been in
existence for decades. The new cellular assays described
above are now being employed in vaccine clinical trials,
increasing our ability to detect and quantify vaccine-
induced cellular responses. This has improved hope that
an immune correlate can be identified in the context of
large efficacy trials.

Various potential outcomes might result from immuniz-
ation (Table 4). Because HIV integrates into the host cell’s
DNA, once infection occurs, it may not be possible to com-
pletely eliminate the virus. Long-term control may be the
only feasible outcome. In any case, for a vaccine to have
substantial public health value it should prevent the 
vaccine recipient from passing the virus on to others.
Evaluating outcomes other than sterilizing immunity,
defined as the absence of detectable infection, will require
long-term follow-up and will present enormous challenges.

Another challenge is to decipher the relevance of different
HIV subtypes to vaccine development. Several studies
have demonstrated that antibody recognition does not 
correlate completely with genetic subtype [38,39]. Further,
CTLs directed against one HIV subtype can kill cells

Table 4

Possible outcomes of immunization against HIV.

Outcome Specific effects

Sterilizing immunity No cells contain integrated provirus (no virus 
detected at any time in blood, lymph nodes, or at 
the site of exposure using the most sensitive 
PCR assay)

No seroconversion to HIV proteins not in the 
vaccine

No CTLs to HIV proteins not in the vaccine

Transient infection Low level of virus detected only very early 
following exposure (no virus detected in blood, 
lymph nodes, or at the site of exposure using 
the most sensitive PCR assay at 6 months and 
all later times)

No or transient seroconversion to HIV proteins
not in the vaccine

No or transient CTLs to HIV proteins not in the 
vaccine

Controlled infection Virus levels fall to and remain at low to 
undetectable levels (<1000 RNA copies/ml) 
following the acute stage of infection

Seroconversion to HIV proteins not in the vaccine
occurs

CTLs to HIV proteins not in the vaccine are 
present

Lack of transmission Virus levels in blood and secretions remain 
to others insufficient to infect others

Table 5

Challenges to conducting preventive HIV vaccine efficacy trials.

Industrialized countries Developing countries

Relatively low incidence of HIV infection even in higher risk groups Concerns regarding exploitation and unequal partnerships
requires large trials of thousands per arm Concerns that the country will not have affordable access to the

At-risk populations present recruitment and retention challenges vaccine if proven efficacious
particularly women at sexual risk, men at heterosexual risk and Infrastructure needs: clinics, labs, equipment, supplies
intravenous drug users Training needs: science, good clinical practice, ethics, lab assays,

Distrust of researchers and government data management
Growing misunderstandings and distrust of vaccines in general National authorities and institutional review boards poorly supported 

or nonexistent
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infected with HIV from other subtypes, due largely to the
more highly conserved nature of the internal HIV proteins.
The pattern of such cross-killing varies and is less efficient
relative to homologous targeting against cells infected 
by HIV from the same genetic clade; however, the magni-
tude needed to provide protection remains unknown
[24••,40,41]. In addition, individuals with different human
leukocyte antigen (HLA) backgrounds are likely to focus
CTL responses on different epitopes, which could theoret-
ically impact immune responses to vaccines and efficacy of
vaccines found to be effective in other populations [42].
Until a correlate of immune protection is validated, clinical
trials must be carried out in multiple countries, where 
different HIV subtypes circulate, to determine whether any
vaccine will be broadly efficacious. Some of the problems
associated with conducting such trials are shown in Table 5.

Conclusions
With the advent of improved cellular immune assays, there
is a strong desire to move candidate vaccines that could
prove at least partially effective into efficacy trials to
attempt to define immune correlates. However, as the
properties required in a successful HIV vaccine remain
unknown, academic creativity in the design of vaccines,
animal models and clinical trials is needed. This should
ensure that improvements would continue if the candidate
vaccines in trials or in the pipeline prove lacking in the
degree, breadth or durability of efficacy. Fortunately, in
recent years a number of promising new candidate vac-
cines that induce strong cellular immune responses have
yielded improved results in preventing AIDS in animal
models. Several of these candidates have recently or will
soon enter clinical trials, fueling the current optimism that
identifying a safe and at least partially effective HIV vaccine
in this decade is an achievable goal.
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